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ABSTRACT
Virtual reality (VR) technology has become a growing force in
entertainment, education, science, and manufacturing due to the
capability of providing users with immersive experiences and natu-
ral interaction. Although common input devices such as controllers,
gamepads, and trackpads have been integrated into mainstream
VR systems for user-content interaction, they cannot provide users
with realistic haptic feedback. Some prior work tracks and maps the
physical objects into the virtual space to allow users to interact with
these objects directly, which improves users’ sense of reality in the
virtual environment. However, most of them use additional hard-
ware sensors, which inevitably increases the cost. In this research,
a lightweight approach is proposed to synchronize the positions
and motions between physical and digital objects without any extra
costs. We use the real-time captured video data from in-built cam-
eras on a VR headset and employ feature points based algorithms
to generate projections of the physical objects in the virtual world.
Our approach does not rely on additional sensors but just uses
components available in a VR headset. Our approach allows users
to interact with target objects with their hands directly without
the need for specially designed trackers, markers, and other hard-
ware devices as used in previous work. With our approach, users
can get more realistic operational feedback when interacting with
corresponding virtual objects.

CCS CONCEPTS
•Human-centered computing→ Virtual reality;Mixed / aug-
mented reality; • Computing methodologies→ Tracking.
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1 INTRODUCTION
Virtual reality (VR) is a new practical technology gaining wide-
spread adoption. Currently, VR headsets can simulate a virtual
environment and give people an immersive feeling of the environ-
ment. In a VR environment, users typically interact with objects in
the scene through handheld controllers or a gamepad [LaViola Jr
et al. 2017; Nanjappan et al. 2018; Yu et al. 2018, 2021]. For example,
when users want to pick up an object in a VR scene, they use a VR
controller to select and interact with the virtual object [Lu et al.
2018; Wang et al. 2022; Yu et al. 2021]. While more direct than with
traditional computing systems (e.g., using a mouse), it is not as
functional and natural compared to the way people interact with
objects in real life [Mine et al. 2014]. Such an interaction design
reduces the VR immersion. If a physical object (or parts of it) can
be projected into the virtual environment, users can interact with
it using their hands directly without the need for auxiliary devices,
such as controllers, which can improve users’ sense of presence
and immersion [Kruszyński and van Liere 2009; Lok et al. 2003].

In this work, synchronization refers to the process of object local-
ization and mapping between real and virtual worlds in real-time.
It offers users a chance to perform interactive tasks in VR with-
out any auxiliary devices like controllers. Existing synchroniza-
tion approaches suffer from various drawbacks, such as expensive
hardware or the inability to track moving objects. With the ad-
vancement of VR head-mounted displays (HMDs) technology, VR
headsets use inside-out technology to scan the surrounding environ-
ment [Gourlay and Held 2017]. The latest VR HMDs are equipped
with a multi-angle camera system that can capture their surround-
ing environment in real-time, making it possible to synchronize the
virtual world with the real world through a vision-based method.
In this work, we employ a feature detection and matching method
to process the image sequence obtained from the VR in-built cam-
eras and estimate the pose of the detected object. To reduce the
computational burden and enhance the robustness of the system,
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we use simple, non-obtrusive markers to provide stable and reli-
able features of the target object. After rapid feature matching, our
method is able to synchronize the positions of physical and virtual
objects and track the moving objects with low-cost hardware in a
mixed reality scenario.

2 RELATEDWORK
2.1 Synchronizing Real and Virtual Objects in

VR
Prior research found that the efficiency of user interaction is highly
dependent on the interaction pattern. For example, the same in-
teraction task takes different amounts of time in VR (controller-
based interaction) and AR (gesture-based interaction) environments.
Krichenbauer et al. [Krichenbauer et al. 2017] designed an experi-
ment to compare the task time consumption between VR and AR.
Their user study shows that in a prolonged interaction task, users
prefer to interact with tangible objects. Their results demonstrate
that synchronizing physical objects in VR allows users to inter-
act with real objects directly, reducing user interaction time and
improving the user experience in the long term.

Enhancing immersion by synchronizing real objects with their
virtual agents has been an active research field in recent years
[Chang et al. 2017], which significantly extends the application
scenarios of VR. For example, VR-based simulations have been
recognized as a valuable approach to skill training and education.
Zhang et al. [Zhang et al. 2019] designed a vision-tangible interac-
tive display method that is based on a binocular optical see-through
HMD. It allows users to manipulate a tangible Rubik’s cube so as
to provide users with a more immersive training experience. They
recruited novices who had no experience in using VR as their par-
ticipants in a user study. Experimental results indicate that VR has
a significant advantage in the training of spatial operation tasks
compared with traditional methods, and the synchronized vision-
tangible interaction method can improve the user experience and
can be a promising approach to enhance users’ immersive feelings
in VR.

A natural environment and haptic feedback can encourage users
to exercise or improve spatial cognition. Chang et al. [Chang et al.
2017] combined VR games with spatial awareness training. They
built a tangible and embodied interaction scenario using a virtual
and real synchronization approach. In their experiments, all the
participants expressed a preference for the system, and most of
them particularly expressed an appreciation for interacting with
physical objects. Tangible VR with the ability to synchronize real
and virtual objects has been considered an active research topic
with great value and potential.

2.2 Synchronization via Additional Hardware
and Sensors

To provide users with suitable tactile feedback in VR, many re-
searchers introduced additional hardware devices to realize the
synchronization between virtual and physical objects. Bozgeyikli et
al. [Bozgeyikli and Bozgeyikli 2019] implemented a VR game with
a tangible spherical sensor (Tangiball). Players in the game were
asked to throw a virtual ball at a target. Final points were scored

according to where the ball fell on the target. The controller of this
game is not a traditional VR gamepad but a tailor-made ball. This
spherical controller is a 3D printed transparent plastic ball that has
two HTC Vive motion trackers inside. When users throw this ball
in the real world, the virtual ball is also tossed into the air in the
virtual scene simultaneously. The computer can use data collected
from motion trackers to recover the ball’s position. Tangiball was
considered a relatively simple solution; nevertheless, it expanded
the boundaries of the traditional gamepad-based interaction to give
users a more realistic interactive experience.

Some researchers went a step further than the previous sim-
ple ball-throwing game by introducing more complex hardware
systems. For example, Harley et al. [Harley et al. 2017] made a
system for tracking tangible objects for VR narratives. The sys-
tem consists of VR headsets, four different shapes of objects with
custom-designed sensor units inside. The four objects ranged from
simple to complex: a box, a plush toy, and two types of plastic toys.
The sensor unit consisted of an IMU, a Blend Micro, and a battery.
The VR HMD and tracking units were assembled into the system
with wired connections. In their experiment, in addition to real-
izing the primary synchronization of objects to the virtual world,
users can interact with virtual objects through sensors. For example,
their users can knock the real box to trigger some event in the VR
environment. Their user study shows that this synchronization sys-
tem achieved some positive results. However, the wired connection
limits users’ degrees of freedom in the physical environment, and
there is a time lag between the operation in the real world and the
response in the virtual environment.

The above solutions are synchronized by using depth sensors.
The hardware used in these solutions is costly and difficult to ac-
quire for the average user. Moreover, solutions that use additional
sensors have problems with migration. The size of the sensor and
the type of data are entirely different in each system. Even for dif-
ferent target objects, sensors are assembled in different ways. The
hardware used in prior work is often incompatible with each of the
mentioned sensor solutions, and the resulting software solution
is also tailored to their specific needs. All these problems make
system migration difficult.

Some researchers have used 3D reconstruction and simultaneous
localization and mapping technologies to achieve the synchroniza-
tion between virtual and real objects. Shahram Izadi et al. [Izadi
et al. 2011] proposed KinectFusion, which utilized a Kinect depth
sensor to carry out a 3D reconstruction of a real scene. The recon-
structed models were used as virtual agents that can be interacted
with in a virtual environment. Kinect is a lightweight and mobile
depth camera that costs slightly less than the hardware devices
used in some other prior work. However, there is no recognition
ability for fast-moving objects in their implementation. Once the
object moves quickly and changes its position, the synchronization
will eventually have problems.

The performance of tracking moving objects in real-time was
dramatically improved in Geiger et al.’s work by introducing a
camera array system [Geiger et al. 2011]. The camera array was
used to recognize and scan the moving objects in space. This design
allows them to identify and reconstruct objects in real time at 25
frames per second. Although objects can be recognized in real-
time, in their final results, the object and the surrounding scene
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were not entirely separated, and there were still some parts of the
background around the final generated model. The simultaneous
use of multiple cameras also affects the cost and portability of their
system.

3 OUR METHOD
Our approach for synchronizing real and virtual objects uses the
real-time captured video data from in-built cameras of a VR headset
and employs feature points-based algorithms to generate projec-
tions of the physical objects in the virtual world. Our approach
does not rely on additional sensors and uses components available
in a VR headset.

To demonstrate the feasibility of this approach, we built the pro-
gram and tested it in the Unity3D platform with the Vive Cosmos
VR toolkit. The Vive Cosmos has a full inside-out tracking mode,
with six cameras capturing most of the user’s positive informa-
tion [VIVE 2022]. The Vive Cosmos gives developers access to the
in-built cameras, which can offer higher image quality than other
inside-out VR tracking systems. The camera parameters are pro-
vided by the official development documentation, which simplifies
the camera calibration process. Our approach can be divided into
three sub-tasks. They are feature points detection, depth calcula-
tion, and virtual object mapping. These three parts form the whole
process but the implementation of each module is relatively inde-
pendent, which is convenient for further iterative developments in
the future.

3.1 Feature Points Detection
In this work, we use the image sequence from the VR headset’s in-
built camera as input and do not add any extra hardware or sensors.
The first step of our method is to separate the target objects from
the input image and obtain essential information to recover their
spatial positions.

In our VR scenario, 3D models of the target objects are pre-
defined instead of being real-time constructed. Because real-time
construction of the models not only consumes more resources but
also has poor model qualities and real-time performance, inaccu-
rate models will result in poor synchronization performance. In
addition, the resolution of the in-built camera is still very low, with
only 640× 480 pixels, which is even worse than most common web-
cams. Traditional 3D reconstruction and tracking methods require
high-quality images to achieve suitable modeling and tracking per-
formance [Koutsoudis et al. 2014]. Such quality data is not available
by the VR in-built cameras. But when building a model of a known
object, all we need to get is the location of a few key points on the
object. Based on the location of these key points, we can project the
corresponding virtual object into the virtual space by matching the
feature points between the virtual object and the real object. This
allows the virtual model to be synchronized with the real target
object. The more key points sampled on a single object, the more
degrees of freedom can be synchronized. For example, for a pen,
only two key points of the nib and the end of the pen are needed
to synchronize all interactive actions with it, except scrolling along
its roll axis, including spatial translation and rotation at any angle.

We use key points to synchronize the interaction of real objects
in the virtual world. The information that needs to be separated

in the image is no longer the full object but sparse key points on
the object. One of the most common and efficient ways to detect
key points is to use color markers. Therefore, we use color markers
to provide point features of target objects and use the HSV color
model to identify the corresponding color markers.

The commonly used RGB color space is greatly affected by il-
lumination variation. Although it is more consistent with the ob-
servation results of human eyes, it is prone to produce deviations
in image processing. Based on this reason, we process the marker
detection in the HSV color space, which is closer to people’s per-
ception experience of color than RGB. It is also often used in image
processing and is considered a better choice for color marker de-
tection and tracking objects with a certain color [Stone 2022].

Table 1: HSV ranges of common colors.

Red Yellow Green Blue Orange

H_min 0 156 26 35 100 11
H_max 10 180 34 77 124 25
S_min 43 43 43 43 43
S_max 255 255 255 255 255
V_min 46 46 46 46 46
V_max 255 255 255 255 255

The color hue (H) is measured in angles ranging from 0° to 360°.
The H angle for red is set to 0°, green is 120°, and blue is 240°. Their
complementary colors are yellow for 60°, cyan for 180°, and purple
for 300°[Fairchild 2004]. Saturation (S) indicates the degree to which
the color approximates the spectral color. The white component
of spectral color is 0, and the saturation is the highest. The value
ranges from 0% to 100%. A larger value indicates a more saturated
color [Fairchild 2013]. Value (V) represents the brightness of the
color. For object color, this value is related to the transmittance or
reflectance of the object. The value usually ranges from 0% (black)
to 100% (white). The HSV value ranges of common colors are shown
in Table 1.

The realization process is divided into three steps. The first
step is the transformation of the color space, which converts the
default BGR color space of each frame into the HSV color space.
The image is then masked. This mask contains the HSV range of
the target color. The number of masks can be set according to the
number of key points that need to be recognized. Multiple colored
key points can be processed simultaneously [OpenCV 2022]. A
threshold value range is set for each featured color; then, we can
obtain all the feature points that meet the conditions in the image
and remove the noise points. Finally, the key points of the object
in the image plane can be detected. An example result is shown in
Figure 1, where a small block that can be seen as a single key point
is detected and tracked in a 2D image plane.

3.2 Depth Calculation
After finding the feature points of the object, what needs to be mea-
sured is the distance between the object and the VR HMD. Common
depth detection methods include binocular vision depth detection
and structured light depth detection. Both depth detection methods
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Figure 1: An example result of the HSV tracking recognition.

can be used to calculate within millimeters at relatively close dis-
tances. Since depth detection using structured light requires special
devices, such as the infrared projector and the infrared camera,
which will increase the complexity of the system, the binocular vi-
sion method is used for depth detection in our work. The binocular
stereo images can be directly acquired from the in-built binocu-
lar camera. People have a pair of eyes that can form parallax to
an object so that they can clearly perceive the three-dimensional
world. Therefore, for a machine, this can be captured via binocular
vision, which obtains image information through two cameras and
calculates the parallax effect so that the computer can perceive
the three-dimensional world. The schematic diagram of a simple
binocular stereo vision system is shown in Figure 2.

Figure 2: The binocular stereo vision system.

The distance between the projection centers of the two cameras is
𝑏, also known as the baseline. Any point P in the three-dimensional
(3D) space is PL at the imaging point of the left camera and PR at
the imaging point of the right camera. According to the principle
of straight-line propagation of light, point P in 3D space is the
intersection of the line between the projection center point and the
imaging point of two cameras. Line segments XL and XR are the
distances between the left and right cameras imaging points and
the left camera imaging plane, respectively, so the parallax of point
P on the left and right cameras can be defined as follows:

𝑑 = |𝑋𝐿 − 𝑋𝑅 | (1)

At this point, the distance between the imaging points PL and
PR of the left and right cameras can be expressed as:

𝑃𝐿𝑃𝑅 = 𝑏 −
(
𝑋𝐿 − 𝐿

2

)
−
(
𝐿

2
− 𝑋𝑅

)
= 𝑏 − (𝑋𝐿 − 𝑋𝑅) (2)

When the focal length 𝑓 of the camera is known, the ratio for-
mula is calculated by similar triangle POLOR and PPLPR as follows:

𝑏 − (𝑋𝐿 − 𝑋𝑅)
𝑍 − 𝑓

=
𝑏

𝑍
(3)

After simplification, we can get the vertical distance between
object P and camera plane OLOR:

𝑍 =
𝑏 ∗ 𝑓

𝑋𝐿 − 𝑋𝑅
(4)

In addition to the basic principle of binocular vision ranging,
some preparatory work is needed, including the calibration of the
binocular camera and the elimination of distortion. The 3D informa-
tion of objects is derived from 2D images. In order to determine the
specific position of the object in the 3D space, besides the informa-
tion of the image, the parameters of the camera are also needed. In a
binocular vision system, apart from the calibration of each camera,
the relative positions and transformation matrix between two cam-
eras should be measured in advance. This process is necessary for
normal binocular vision implementations, but in our experiment,
the development API of the Vive Cosmos provides us with camera
intrinsic data after calibrating the HMD.

When the corresponding relationship between the 3D space
and the image is determined, in order to calculate the parallax,
the corresponding relationship between the points in the three-
dimensional space on the left and right images is needed, which
is the purpose of stereo matching. Through stereo matching, the
corresponding relationship between the points in the left and right
images can be defined so as to obtain the parallax and recover
the three-dimensional information of the points. In the algorithm,
we use the pole line constraint to reduce the complexity of the
matching process and improve the speed and accuracy of the stereo
matching process. The pole line constraint refers to a point in the
left image, and its corresponding matching point on the right image
must be on a line, which is the polar line. The polar line constraint
can reduce the searching range of images from two-dimensional to
one-dimensional, and only need to search on a straight line, which
can greatly reduce the complexity of searching and improve the
accuracy of matching.

After that, we bring the pixel position of the object obtained in
HSV color recognition into the calculation of binocular ranging to
get the specific distance of the target point in 3D space. The final
result is shown in Figure 3.

3.3 Virtual Object Mapping
After obtaining the position of the key points on the image and the
distance estimation of the key points, we can reproduce the key
points in virtual space. When the parallax and imaging position are
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Figure 3: The final result of the depth calculation.

known, we can obtain the coordinates of corresponding points in
3D space through inversion depth calculation, as shown in Figure 4.

Figure 4: The process to obtain the coordinates of point P in
3D space.

When point P moves in the three-dimensional space, the imaging
position of point P on the left and right cameras will change and
thus the parallax will also change accordingly. According to the
above formula, the parallax is inversely proportional to the distance
between the point in the three-dimensional space and the projection
center plane. Therefore, as long as we know the parallax of a point,
we can know the depth information of that point [Gao et al. 2017].
The image of point P in 3D space is shown in the figure. Based on
the similar triangle principle, the relationship can be represented
as: 

𝑋 =
𝑥−𝑥0
𝑓

· 𝑍 =
𝑥−𝑥0
𝑓

· 𝑏∗𝑓
𝑋𝐿−𝑋𝑅

𝑌 =
𝑦−𝑦0
𝑓

· 𝑍 =
𝑦−𝑦0
𝑓

· 𝑏∗𝑓
𝑋𝐿−𝑋𝑅

(5)

The above equations describe how to find the position of a point
in 3D space given the position of the image and the corresponding
depth, but the process is represented in real space, obtaining real
data and then finding the 3D position in virtual space requires
some other details. The biggest difference between reading real
data and placing it in real space and reading real data and mapping
it in virtual space is the conversion of units. We adjust Unity’s
settings so that units in the real world coordinates and virtual
world coordinates reach a ratio of about 1:1. This resolves most of
the unit conflicts, but there is one data unit that differs from the
others. Those are the coordinates of the object in the picture. The
coordinates of an object on a picture are expressed in pixels, but
the ratio of pixels to specific units of distance is unknown.

We adjust the parameters of the virtual camera to be the same
as the headset cameras in order to solve this problem. In this way,
the projection plane in the real world can be synchronized with the
projection plane in the VR scene.

Figure 5: Imaging of the virtual space.

The camera imaging of the virtual space is shown in Figure 5,
where X represents half of the picture width in pixels. Since the
parameters of the real and virtual cameras are the same, angle 𝜃 is
1/2 of the camera’s view. So by the properties of a tangent, we can
get the following relationship:

tan
(
𝜃𝑝

)
tan(𝜃 ) =

𝑋𝑝

𝑋
(6)

So far, we have bypassed the units of XP to get the corresponding
angle 𝜃P. With 𝜃P and the depth we get in the depth calculation, the
horizontal coordinates of objects in virtual space can be obtained.
In the design of the final angle 𝜃 , the camera angle is 85°, which is
larger than the 60° field of view of common users [Yan et al. 2018].
Before the user approaches the edge of the camera’s field of view,
he or she can easily adjust the angle of the head to keep the object
from falling out of view.

4 EXPERIMENT
4.1 Implementation and Experimental Results
In this section, we demonstrate the experiment design and some
results of our method. We present the single-point synchronization
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first, then a scenario with multiple key points detection and syn-
chronization. Figure 6 shows the results of the synchronization for
a single-point target. The degree of freedom represented by a single
point is very limited. However, it clearly illustrates the workflow
and effectiveness of our method. This single-point projection can
also be used in a simple but common interaction scenario that only
requires tracking the 3D translation motion of a single object.

Figure 6: Result of tracking based on a single point.

Because the only spatial change represented by a single point
is translation, we use a VR controller as a reference point. As it
has a direct connection with the HMD, the VR controller is fully
synchronized between the real and virtual worlds, so it is selected
as the reference point for the single-point synchronization. The
images in the upper row are the scenes that the user can see on the
screen, while the images in the lower row are the corresponding
VR scenes. The yellow wood block in the image is the target object
of single-point projection. In this experiment, the target is a single
point, so rotation and other operations cannot be recovered in VR.
It can be seen that the yellow block is on the left of the controller
at the beginning, which is the same as in the VR scene. The block
is then picked up and hovered over the controller. This process is
synchronized in the virtual scene. Finally, the block is placed on
the right side of the controller. The movements of the virtual block
are consistent with the real block.

When there aremultiple key points on an object, the object can be
synchronized to allowmore interaction patterns. Figure 7 shows the
simulation of a pen with two key points—the nib and the end of the
pen. Through these two points, in addition to spatial translation, the
synchronized object can also achieve rotation synchronization, as
shown in Figure 7. The upper row images show a rotation process of
a pen held in a user’s hand. This process is completely synchronized
in the VR scene by applying our method as illustrated in the lower-
row images.

The two results demonstrate that it is possible to use key points
to synchronize real and virtual objects in VR. System latency is
restricted to a low-value range that meets a real-time system’s
requirements. At the same time, the system only uses the in-built
camera of the VR headset as the input sensor without introducing
other hardware, which is efficient and cost-effective.

Figure 7: An example of a two-point tracking to simulate a
pen.

4.2 Analysis
To analyze the advantages and disadvantages of this synchroniza-
tion method, we studied several existing and widely used synchro-
nization schemes. The advantages of the proposed scheme can be
demonstrated by comparing the existing schemes with our method.
The comparison is carried out from three dimensions. They are
hardware cost, computing resource usage, and time efficiency.

4.2.1 Hardware Cost. The first is the hardware cost. We investi-
gated the hardware and costs in some prior work. Some of these
items are listed in Table 2.

Table 2: Common hardware requirements and costs for track-
ing and synchronizing objects.

Solutions Hardware
requirements

Cost
(USD)

Tangiball [Bozgeyikli and Bozgeyikli 2019] HTC Vive motion tracker * 2 300
KinectFusion [Izadi et al. 2011] Kinect 150

VR controllers HTC Vive controller * 2 300
Camera array Camera * 10 200
Our method Color tag(s) 8

In the Tangiball work [Bozgeyikli and Bozgeyikli 2019], Bozgeyikli
et al. used two HTC Vive trackers to synchronize the ball. Their
experiment connected two sensors to detect the position of the ball.
The result is accurate, but the cost is very high due to the use of
extra HTV Vive trackers. Their solution requires users to pay about
USD 300 as the additional hardware cost without counting other
additional materials such as the spherical shell. The most common
hardware that uses sensors for synchronization is the VR controller.
A pair of Vive Cosmos controllers used in the experiment cost about
USD 300 also.

The 3D reconstruction-based implementations also use addi-
tional hardware to improve performance. For example, many 3D
reconstruction algorithms use the Kinect camera as the input sensor,
which costs over USD 150. Similarly, in the real-time 3D reconstruc-
tion completed by multiple cameras, a camera array needs at least
ten cameras to realize the real-time tracking of objects. Even if the
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unit price of the camera in the camera array is as low as USD 20,
the total cost is more than USD 200. In contrast to those expensive
and cumbersome systems, our method only needs color markers
which makes the cost below USD 8.

In addition to the direct hardware costs, our solution is also
easier to migrate between different applications. In Table 2, the
hardware used by different projects is completely different and so
are the target objects that are synchronized with each other. This
results in low migration efficiency for the target objects. In the case
of a sensor-synchronized sphere, its synchronization approach is
difficult to apply to objects of different shapes, such as pens or tables,
and chairs. In contrast, our solution simply requires developers to
set up markers and implement corresponding algorithms. It can be
easily applied to synchronize different objects in various application
scenarios, which greatly reduces the system set-up and migration
costs.

4.2.2 Computing Resource Usage. The Vive Cosmos API has an
AR module that uses 3D localization and mapping algorithms to
synchronize real objects into virtual space [SRWorks 2022]. In this
section, we compared the computing resource usage of our method
with the synchronization algorithm from the Vive Cosmos API.

The two algorithms were tested on a computer with an Intel
Core i7-11800H CPU and an Nvidia Geforce 3070 GPU. Computers
run at the same voltage to ensure stable CPU and GPU performance.
The program is run for 60 seconds in total. The GPU usage of the
programs is shown in Figure 8.

Figure 8: A comparison of the GPU usage between our ap-
proach and the Vive Cosmos API.

It can be observed from the boxplot that the average GPU usage
of our algorithm is much lower than that of conventional 3D recon-
struction and mapping algorithm (around 54%), while the average
cost of our algorithm is only about 47%. Furthermore, it can be seen
from the distribution of the boxplot that our proposed algorithm
is more stable than that of the 3D reconstruction method during
runtime. This is because our proposed method is always working
in the same state and scanning regardless of whether the object is
moving. However, the conventional 3D localization and mapping
method is only activated when the object moves.

4.2.3 Time Efficiency. In addition to the consumption of system
resources, the time efficiency of the algorithm is also an impor-
tant performance indicator. The speed of a single scan determines
whether the algorithm can synchronize objects in real-time. The
test was done by putting the Vive Cosmos 3D reconstruction and
mapping algorithm and the key point recognition algorithm into
Unity’s Update method. In Unity, the Update method is executed
once per frame, and in synchronous execution, each frame waits
for the Update method to be completed before moving to the next
frame [Unity 2022]. We count the number of frames per second to
get a single run time for each algorithm. The two programs are ex-
ecuted for one minute, and the average frame rate of each program
is recorded. The final results are shown in Table 3.

Table 3: Time efficiency comparison.

Solutions Time Cost Moving Object

3D Reconstruction 0.5-1.3s per scan No
Our method 0.05-0.083s per scan Yes

Our algorithm takes about 0.05 seconds for a single scan, which
allows real-time synchronization. The performance of the 3D re-
construction based algorithm is very poor. The fastest single scan is
0.5 seconds and as such, it is hard to track the moving object in real-
time. This result also shows that in the same hardware environment,
our method has an absolute advantage in running speed.

5 DISCUSSION
In addition to the advantages, we also analyzed some limitations
of the proposed method. Binocular vision depth detection faces
challenges in some situations. Because the daily use will not always
be in an ideal environment, the detection of markers will not always
be error-free. In some frames, the recognition algorithm may not
find the corresponding marker in the image given by a binocular
camera, which would lead to wrong depth estimation. This can
occur in environments where the lighting condition is not stable
or there are too many interfering colors in the background. Partial
occlusion can also have a significant impact on the marker detection
process. When the depth of the key point cannot be measured
accurately, it can cause tracking drift problems. This type of error
has an impact on the final synchronization results, which need to
be analyzed and eliminated in the future.

Even so, our method is effective and efficient under normal con-
ditions. In the experiment of pen synchronization, we executed the
algorithm with a projected pen for one minute and recorded the
number of errors it made. Out of 20 experiments, the average num-
ber of errors was 9. In the previous time calculation, the algorithm
can scan 20 times per second, which would be about 1,200 scans a
minute. So the error rate is only 0.75%. And because errors often
occur consecutively, the number of errors perceived by the user is
smaller. Such error rates are acceptable in practical use.

In the future, we plan to improve the recognition algorithm of key
points and optimize the tracking results to support feature extrac-
tion for dynamic or complex scenarios, such as those environments
with a faint light or containing objects with similar colors. Another
avenue for exploration is about using this approach for controlling
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unmanned group vehicles controlled remotely so that objects of
interest (e,g, to be avoided [Luo et al. 2022] or to be grasped [Li
et al. 2022]) can be tracked dynamically using inexpensive cameras
installed on the vehicles. Some filters, such as Kalman filter, which
have been shown to be useful in tracking tasks can be explored.
With the rapid development of machine learning algorithms, it is
possible to further reduce hardware costs and identify errors by
updating the traditional color recognition method with efficient
machine learning-based approaches.

6 CONCLUSION
In this work, we demonstrated a novel solution for synchronizing
virtual and real objects. It allows developers to use the onboard, in-
built cameras of a virtual reality head-mounted display (VR HMD)
as the input sensor and combines with a feature points detection
algorithm and a binocular depth estimation method to achieve
object synchronization for real-time interaction in VR. The con-
tribution of this project is mainly twofold. The first is an efficient
object synchronization method in VR without adding additional
hardware devices. The mainstream solutions for real and virtual
synchronization rely on the use of different sensors, whereas our
method significantly reduces the hardware cost compared to pre-
vious work. The minimal lower cost of hardware makes this new
solution more marketable. Second, the detection and mapping al-
gorithms are simplified and optimized. The experimental results
have demonstrated that the improvements are straightforward and
effective, which not only reduces the use of system resources but
also makes it easier to migrate between systems and applications.
Overall, our proposed solution can fill the gap in low-cost object
synchronization and tracking for VR applications. Compared with
high-precision solutions, it has a clear advantage in cost and can
also achieve dynamic object tracking.
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