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Figure 1: Screenshots of the two new bare-hand mid-air pointing/selection techniques for dense VR environments: (a) Hand-
DepthCursor, and (b)HandConeGrid. We compare themwith (c)MultiFingerBubble [9], an existing hand gesture-based technique,
in a controlled target selection task with (d-e) two levels of density. Note: black lines, arrows, texts, and avatars are for illustra-
tions only and are not shown to users.

ABSTRACT
Target selection in dense virtual reality (VR) environments is chal-

lenging. Prior work has explored different controller-based ray-

casting techniques to assist target selection in such environments.

However, limited research has focused on selection via mid-air

∗
Both authors contributed equally to this research.

†
Corresponding author (haining.liang@xjtlu.edu.cn)

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CHI EA ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9422-2/23/04.

https://doi.org/10.1145/3544549.3585615

barehand, which represents another major input metaphor for im-

mersive environments. In this paper, we first review the existing

raycasting selection techniques for dense VR environments. Based

on this, we propose and develop two freehand pointing selection

techniques—HandDepthCursor and HandConeGrid, and implement

MultiFingerBubble, a recently-proposed technique. We then con-

duct a user study to compare and evaluate their performance and

experience in a target selection task in dense VR environments. Our

results suggest that HandDepthCursor and HandConeGrid led to

significantly faster and more accurate selection performance, and

lower perceived workload and arm fatigue. In addition, HandCone-

Grid showed a distinct advantage in high-density environments.
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1 INTRODUCTION
Object selection is a canonical task in immersive virtual reality (VR)

and other immersive environments and commonly serves as an

initial step for various interactions [1, 3, 14, 19]. Pointing based

on raycasting [21] is a major object selection metaphor in such

environments [1, 14]. When using a raycasting-based technique,

users control a ray emitted from an origin that is commonly from

controllers [14, 35, 37] but can also be from users’ hands [9, 24, 36,

41], head [20, 25, 33, 39, 40], or eyes [17, 22, 24, 25, 33]. Raycasting-

based techniques allow users to select objects beyond their reach

with relatively less physical movement [1]. Due to these advantages,

raycasting is widely used in current commercial VR head-mounted

displays (HMDs). However, raycasting’s performance deteriorates

in dense environments due to two types of ambiguities: (1) the

objects might be small and distant and positioned close to each

other, making the target challenging to be located, and (2) the target

may be partially or even fully occluded by other objects [32, 38, 42].

To overcome these challenges in dense environments, researchers

have proposed enhancement techniques to support pointing selec-

tion (e.g., [11, 13, 42]; see also Section 2). For example, Kopper et

al. [13] proposed Sphere-casting refined by QUAD-menu (SQUAD)

to let users refine the selection progressively until they select the

intended target. Like SQUAD, most enhancement techniques are

designed for and evaluatedwith handheld controllers, which are cur-

rently the most common input for interacting with VR HMDs [19].

There has been less research that has looked into bare-hand mid-air

input for VR, an alternative to controllers. With advances in hand

tracking technologies, bare-hand mid-air input has become more

accurate and cost-effective [6, 15]. Some state-of-the-art VR HMDs,

such as Meta Quest 2 and PICO 4, have inside-out cameras enabling

bare-hand mid-air input without extra hand-tracking devices. Such

a controller-free approach is becoming more popular because it

may facilitate effective interaction with increased immersion and

presence [6]. It is more similar to how we interact with real-world

objects and increases expressiveness. However, gesture-based inter-

action is different from controller-based interactions—6 degrees of

freedom (DoF; 3 positional DoF and 3 rotational DoF) with extended

DoF and operational possibilities when including buttons and trig-

gers [15, 19]. This leads to a gap in bare-hand pointing selection

for dense VR environments.

To address this need, we first review existing controller-based

pointing techniques and classify them into a taxonomy [1, 42].

Based on this survey, we developed two potential bare-hand point-

ing selection techniques, HandDepthCursor and HandConeGrid,

with depth- and grid-based disambiguation mechanisms achieved

via expressive hand gestures. Moreover, we also implemented Mul-

tiFingerBubble [9], a recently-proposed technique, and evaluated

them via a user study (𝑁 = 18) with two levels of density. Mea-

surements include efficiency, accuracy, perceived user experience,

workload, arm fatigue, and participants’ preference. Our results find

that HandDepthCursor and HandConeGrid outperformed MultiFin-

gerBubble in accuracy, perceived workload, and arm fatigue. Hand-

ConeGrid showed significantly higher accuracy in high-density

environments. MultiFingerBubble, though faster than the other

two, generated more errors and required more effort.

The main contribution of this work is an empirical evaluation

of three bare-hand mid-air pointing techniques for dense environ-

ments on VR HMDs. Our work provides insights into the design

and development of future freehand selection techniques for VR

HMDs.

2 RELATEDWORK
We review the enhanced raycasting techniques based on the taxon-

omy proposed by Argelaguet and Andujar [1], which divides the

disambiguation mechanisms into three groups: manual, heuristic,
and behavioral.

Manual approaches involve additional steps to disambiguate the

context, making the target obvious to observe and easier to select.

The existing techniques can be further divided into depth-based and

grid-based approaches [42]. A depth-based approach adds amovable

depth cursor to the ray, which enables the selection on the depth

axis [11, 32]. Baloup et al. [2] proposed RayCursor for VR HMDs

through which users can move the cursor via the controller’s touch-

pad. Yu et al. [42] introduced Alpha Cursor, an enhanced version of

RayCursor, and when using it, the objects between the cursor and

the user are made transparent to help with fully-occluded object

selection. On the other hand, a grid-based approach enables users to

select an area where the intended target is located, then rearranges

the objects within the area on a grid. The main difference among

the existing techniques is in the area selection step. SQUAD [13]

uses a quad-menu to provide progressive refinement. Expand [7]

allows users to zoom in on a specific area. Flower Cone [42] extends

the ray to an adjustable cone (or a spotlight) for the area selection.

Lasso Grid [42] defines the region by drawing a shape. Besides,

Flower Ray [11] lists all the intersected objects by the ray on the

grid, while Grid Wall [42] lists all objects in the scene on the grid.

For techniques that follow manual approaches, different elements

of the handheld controller are mapped to these functionalities. For

example, the joystick is commonly used for adjusting the area’s

size or the depth cursor, while buttons/triggers can activate dis-

crete and continuous selection mechanisms by short-pressing or

long-pressing them, respectively.

Heuristics approaches rank the objects based on defined heuris-

tics and determine the target that the user intends to select. Flash-

light [16] selects the object that is closest to the central axis of

the selection volume. Sticky-Ray [30] remains the last intersected

https://doi.org/10.1145/3544549.3585615
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Table 1: Summary of the literature review: existing controller-based and our bare-hand raycasting techniques for dense VR
environments.

Disambiguation Mechanism Key Literature

C
on

tr
ol
le
r

Manual (Grid-based) SQUAD [13], Expand [7], Flower Ray [11], Flower Cone [42], Grid Wall [42], Lasso Grid [42]

Manual (Depth-based) Depth ray [11, 32], Lock ray [11], RayCursor [2], Alpha Cursor [42]

Heuristic Flashlight [16], Sticky-Ray [30], Bubble Ray [18]

Behavioral IntenSelect [8], SenseShape [23]

B
ar
e-

H
an

d Manual (Grid-based) HandConeGrid (ours)

Manual (Depth-based) HandDepthCursor (ours)

Behavioral MultiFingerBubble [9]

object as the candidate object. Lu et al. [18] proposed Bubble Ray, a

raycasting technique that selects the nearest target in the spherical

bubble. Besides, assigning probabilities when performing selection

is another approach [27, 40]. Instead of applying heuristics for the

selection confirmation, behavioral approaches consider users’ ac-

tions when manipulating the ray to locate the target. IntenSelect [8]

and SenseShape [23] use time-based ranking approaches to calcu-

late users’ intentions dynamically. A notable behavioral technique

is MultiFingerBubble [9], the only bare-hand pointing technique

we found for target selection in dense VR environments. Multi-

FingerBubble maps several objects in the selection volume to the

user’s fingers. By moving the hand and fingers, the user can adjust

the selection volume and the candidate objects. Once the target is

determined, the user can flex the corresponding finger to confirm

the selection.

Table 1 summarizes the above techniques designed for selec-

tion in dense VR environments. Prior work has shown that some

manual approaches show greater efficiency than heuristics and

behavioral approaches due to the reduced time requirements for

disambiguation [11]. For this work, we developed two bare-hand

mid-air pointing techniques based on the manual approach to al-

low us to do a first evaluation of both depth-based and grid-based

sub-approaches. In addition, we also implemented the first and only

behavioral-based technique, MultiFingerBubble [9], and conducted

a user study to compare and evaluate their performance and user

experience.

3 TECHNIQUES
3.1 HandDepthCursor (HDC)
HandDepthCursor (HDC) follows a depth-based manual approach

and was inspired by RayCursor [2] and Alpha Cursor [42]. Figure 1a

shows a preview of HDC. HDC uses raycasting as the selection

mechanism. The user can point to the target using her dominant

hand, and perform selection via a pinch gesture. Like other depth-

based techniques, the user can go deeper and move back to the

densely cluttered environment via two non-dominant hand gestures.

To go deeper, the user can point her index finger to the front. To

come close, the user can point her thumb to the back. These gestures

are similar to their expressions in the real world. Besides, we also let

the objects become transparent if they are behind the cursor, which

can further improve the disambiguation of objects in occluded

scenarios [42].

3.2 HandConeGrid (HCG)
HandConeGrid (HCG, as shown in Figure 1b) follows a grid-based

approach using a cone for area selection like Flower Cone [42]. HCG

starts with cone-casting. The user uses her non-dominant hand to

cast a cone to cover a volume that the target locates. By spreading

or closing her non-dominant hand (more specifically, spreading

fingers or putting fingertips together), the user can adjust the size of

the volume. To confirm the area selection, the user performs a pinch

gesture with her dominant hand. All objects in the defined volume

are listed on a grid. Then, the user enters the target selection step

where she points to the target and performs another pinch gesture

to confirm the selection. If the user wants to redo an area selection,

she can pinch when pointing to a blank area on either side of the

grid.

3.3 MultiFingerBubble (MFB)
MultiFingerBubble (MFB) was adopted from [9] that follows a be-

havioral approach (see Figure 1c). WithMFB, a user casts a spherical

volume positioned by her dominant hand’s palm to include multiple

objects in the volume. MFB would associate the object candidates

with the fingers. The user can move her palm and fingers to adjust

the selection. Finally, the user flexes the corresponding finger to

select the mapped, desired object. In this work, we used the index,

middle, and ring fingers, and visualized the mapping lines between

candidate objects and fingers in red, green, and blue, respectively,

following the suggestions in [9]. In addition, we adopted the stable

mapping strategy; that is, the newly entered object would take the

finger assignment and its color indication from the exited object.

4 USER STUDY
This user study aims to compare and evaluate the performance and

experience of the three freehand target selection techniques with

two levels of target density. We followed VR Object Selection and
Manipulation Study Checklist [3] to report our user study.

4.1 Participants and Apparatus
We recruited 18 participants (7 females, 11 males) aged between 20

to 31 (𝑀 = 23.28, 𝑆𝐷 = 2.65). Based on the results collected from a

pre-experiment questionnaire, all participants were right-handed.

Six of them had normal or corrected-to-normal vision. Twelve were

familiar or very familiar with VR HMDs and used them at least
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once a week. Five reported being familiar or very familiar with

mid-air gesture-based input.

A Meta Quest 2 was used to provide the experimental virtual

environment. It has a 1832×1920 per-eye resolution, an 89
◦
hori-

zontal field of view, and a 120Hz refresh rate. The HMD’s inside-out

cameras allow 6 DoF hand tracking and finger configuration. The

HMD was connected to a Win10-based desktop with an Intel i7-

8700K CPU@ 3.70GHz, an NVIDIA GeForce GTX 1080 Ti GPU, and

16GB of RAM. The VR environment was created in Unity (version

2021.3.36f1c1) with Oculus Integration SDK (version 42.0).

4.2 Design, Task, and Measurements
We used a 3×2 within-subjects design with Techniqe (HDC vs.

HCG vs. MFB) and Density (high vs. low) as the two independent

variables. We adopted the target acquisition task from [26]. Several

spheres (radius = 10cm) were distributed in a 1m×1m×1m cuboid

space 0.8m in front of the participants. These spheres included one

orange target sphere, and the remaining were white distractors.

We used Poisson disk sampling [5] to randomize the positions of

spherical objects, with minimum distances of 20cm and 30cm be-

tween each sphere, representing high and low density conditions,

respectively (see Figure 1d-e). Participants were asked to select the

orange target as fast and as accurately as possible. We applied a

Latin-square design to counterbalance the order of Techniqe con-

ditions and randomized the order of Density in each Techniqe

condition. In total, we collected 2160 trials of data (= 18 participants

× 3 techniques × 2 levels of density × 20 repetitions).

We collected both participants’ performance data and their sub-

jective feedback. In each trial, we recorded the selection time, which
counted from when the objects were shown until the participants

selected the target correctly. We also recorded the number of trials

with correct selections—that is, successful trials. Success rates were
then derived by dividing the number of successful trials by the total

number of trials for each condition. After participants completed

all trials in a Techniqe condition, we gave them a short version

of the User Experience Questionnaire (UEQ-S) [28], a NASA-TLX

questionnaire [12], and a Borg CR10 rating [4] to measure the user

experience, workload, and arm fatigue of each technique. At the end

of the experiment, we also asked participants to rank the techniques

based on their overall preference and conducted a semi-structured

interview to ask for more feedback and comments.

4.3 Procedure
The whole experiment lasted approximately 35 minutes per par-

ticipant. Participants first completed a questionnaire asking about

their demographic information and previous experiences with VR

HMD. They were then introduced to the VR device, experimental

design, and tasks. Next, they wore the HMD and started the ex-

periment. Participants were standing while performing the tasks.

Before the formal trials in each Techniqe condition, there was

a fixed 3-minute training for participants to get familiar with the

technique. After each Techniqe condition, they were asked to fill

in the above-mentioned questionnaires, and have a rest. At the end

of the experiment, they ranked the techniques and received a short

interview about their subjective feelings.

5 RESULTS
5.1 Objective Measurements
We first identified and removed outliers where selection time ex-

ceeded 𝑀 ± 3 · 𝑆𝐷 in each condition (41 trials, ≈1.90%). Shapiro-
Wilk tests and Q-Q plots indicated that both performance measures

were non-normally distributed. Thus, we pre-processed the data

through Aligned Rank Transform [10, 34] before performing two-

way repeated-measure (RM-) ANOVA tests. Pairwise comparisons

were conducted with Bonferroni corrections.

5.1.1 Selection Time. RM-ANOVA tests revealed that Techniqe

(𝐹2,1977 = 70.587, 𝑝 < .001, 𝜂2𝑝 = .067) and Density (𝐹1,1977 =

50.104, 𝑝 < .001, 𝜂2𝑝 = .025) had a significantmain effect on selection

time. An interaction effect between Techniqe and Density was

also found (𝐹2,1977 = 8.887, 𝑝 < .001, 𝜂2𝑝 = .010). Figure 2a shows

the significant differences in post-hoc tests. HCG (𝑀 = 4.18𝑠, 𝑆𝐷 =

1.51𝑠) was significantly slower than HDC (𝑀 = 4.05𝑠, 𝑆𝐷 = 2.75𝑠)

and MFB (𝑀 = 3.76𝑠, 𝑆𝐷 = 1.96𝑠) in high density (𝑝 < .001 for

both). Similarly, HCG (𝑀 = 3.80𝑠, 𝑆𝐷 = 1.44𝑠) was significantly

slower than HDC (𝑀 = 3.03𝑠, 𝑆𝐷 = 1.94𝑠;𝑝 < .001) and MFB

(𝑀 = 3.68𝑠, 𝑆𝐷 = 2.09𝑠;𝑝 = .001) in low density. Also in low

density, HDC was faster than MFB (𝑝 < .001). The selection time

by using HDC and HCG significantly increased when the density

increased (𝑝 < .001 and 𝑝 = .007, respectively).

5.1.2 Success Rate. Results from RM-ANOVA tests showed that

Techniqe (𝐹2,85 = 45.3170, 𝑝 < .001, 𝜂2𝑝 = .516) and Density

(𝐹1,85 = 21.649, 𝑝 < .001, 𝜂2𝑝 = .203) had a significant main effect on

success rate. An interaction effect between Techniqe andDensity

on success rate was also found (𝐹2,85 = 5.734, 𝑝 = .005, 𝜂2𝑝 = .119).

Figure 2b summarizes results and significant differences in post-

hoc tests. In high density, HCG (𝑀 = 98.83%, 𝑆𝐷 = 2.96%) had

a significantly higher success rate than HDC (𝑀 = 93.17%, 𝑆𝐷 =

5.59%;𝑝 < .001) and MFB (𝑀 = 87.44%, 𝑆𝐷 = 8.77%;𝑝 < .001).

In low density, both HCG (𝑀 = 99.72%, 𝑆𝐷 = 1.18%) and HDC

(𝑀 = 97.68%, 𝑆𝐷 = 5.46%) had significantly higher success rates

than MFB (𝑀 = 89.33%, 𝑆𝐷 = 7.75%) (𝑝 < .001 for both). Besides,

the success rate by using HDC decreased 4.51% when the density

increased (𝑝 = .002).

5.2 Subjective Measurements
We performed Friedman tests for subjective measurements with

Techniqe as the only independent variable. Pairwise compar-

isons were also conducted with Bonferroni corrections. Figure 2c-f

summarizes these results.

5.2.1 User Experience. Friedman tests showed that Techniqe

had a significant main effect on pragmatic quality (𝜒2
2
= 8.943, 𝑝 =

.011,𝑊 = .248), but not on hedonic quality and overall quality

(𝑝=.097 and .662, respectively). Pairwise tests did not yield any

significant differences on pragmatic quality (𝑝 > .05).

5.2.2 NASA-TLX workload. Friedman tests indicated that Tech-

niqe had significant main effect on mental demands (𝜒2
2
= 13.759,

𝑝 = .001,𝑊 = .382), physical demands (𝜒2
2
= 11.446, 𝑝 = .003,𝑊 =

.318), temporal demands (𝜒2
2
= 12.043, 𝑝 = .002,𝑊 = .335), ef-

fort (𝜒2
2
= 7.483, 𝑝 = .024,𝑊 = .208), frustration (𝜒2

2
= 8.400, 𝑝 =
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Figure 2: Plots of results: (a) bar chart of mean selection time in seconds, (b) bar chart of mean success rates in percentage,
(c) boxplot of UEQ scores (higher scores are better), (d) boxplot of NASA-TLX scores (lower scores are better), (e) boxplot
of Borg CR10 scores (lower scores are better), (f) users’ rankings (#1, #2, and #3) of the three techniques. The error bars in
(a-b) represent standard errors. Significant differences in pairwise comparisons are marked with *, **, and ***, representing a
Bonferroni-adjusted significance level of .05, .01, and .001, respectively.

.015,𝑊 = .233), and overall workload (𝜒2
2
= 14.111, 𝑝 < .001,𝑊 =

.392). A close significant effect of Techniqe on Performance (𝜒2
2
=

5.719, 𝑝 = .057,𝑊 = .159) was found. Significant differences identi-

fied from pairwise tests were summarized in Figure 2d. Particularly,

MFB (𝑀𝑑𝑛 = 44.44) led to a significantly higher workload than

HDC (𝑀𝑑𝑛 = 25.00;𝑝 = .021) and HCG (𝑀𝑑𝑛 = 20.83;𝑝 = .003).

5.2.3 Arm Fatigue. For perceived arm fatigue collected via Borg

CR10 questionnaire, there was a significant main effect of Tech-

niqe (𝜒2
2
= 10.714, 𝑝 = .005,𝑊 = .298). Results from pairwise com-

parisons showed that MFB (𝑀𝑑𝑛 = 2.50) induced more arm fatigue

than HDC (𝑀𝑑𝑛 = 1.00; 𝑝 = .032) and HCG (𝑀𝑑𝑛 = 1.00;𝑝 = .026).

5.2.4 Overall Preference. As shown in Figure 2f, participants’ pref-

erences varied. 11 participants (61%) ranked HCG as the most fa-

vored technique, and 10 (55.56%) ranked HCG as the second. For

the third place (the least favored technique among the three), 5 par-

ticipants (27.28%) chose HDC, 5 chose (27.28%) HCG, and 8 (44.44%)

chose MFB.

6 DISCUSSION
6.1 Technique Evaluation
6.1.1 HandDepthCursor (HDC). More than half (𝑁 = 10) of partic-

ipants ranked HDC in second place. In the interview, participants

mentioned that the forward/backward move gestures were easy

to learn and use, and collaborated well with the raycasting tech-

nique. There were two main weaknesses of HDC mentioned by

participants. First, four participants complained the moving speed

of the depth cursor was too slow. When an object was partially

occluded at a distance, they preferred to select the target directly

rather than disambiguate the cluttered environment. This led to a

dropped success rate in high density conditions where objects were

closer to each other (see Figure 2b). However, other participants

felt the speed was suitable. Thus, we recommended offering users

the freedom to customize the cursor’s moving speed if HDC is used

in real applications, like the settings on desktops. Second, similar to

other depth-based techniques, HDC reduces the disambiguation in

the depth axis but not the x-y plane. When such a case happens at a

distance, participants felt that is challenging to maintain the point-

ing gesture, resulting in a jitter among the objects. On the whole,

HDC is fast, accurate, and highly usable (see Figure 2), especially

in a relatively low density environment.

6.1.2 HandConeGrid (HCG). Overall, HCG outperformed the other

two techniques in our study. Though it was statistically slower than

the other two (see Figure 2a), participants did not feel it was slow

in practical use. Participants did not give explicit comments on the

hand gestures. While P1 and P8 mentioned that they were “highly
involved in the selection process without extra physical efforts”. We

believe HCG, including its mechanism and the proposed gestures,

involves a smaller motor space, thereby minimizing their effort to

perform precise target selection in dense environments. However,

participants suggested not including the area selection phase when

they could select the target (e.g., the target was positioned in front

of them). HCG involves area selection and target selection, both

of which use the same confirmation mechanism (i.e., a pinch ges-

ture using the dominant hand). One solution can be using different

gestures for the two types of selection. Another solution is inte-

grating a suitable mode-switching action for activating the area

selection [29, 31].

6.1.3 MultiFingerBubble (MFB). MFB did not perform well on the

whole. Its success rate was the lowest among the three in either

level of density. It is worth mentioning that MFB was the only
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technique having a similar selection time and success rate in two

levels of density, which means the density may not affect its selec-

tion process much. On the other hand, MFB led to a significantly

higher workload and more arm fatigue than the other two. Seven

participants reported unintended activations (due to unintentional

finger flexes), which were not reported or described in detail by [9].

One possible reason is that we used inside-out cameras on the

headset to track hand gestures rather than tracking gloves. When

participants reached out their hands for pointing to the target, the

cameras may not configure their fingers accurately because they

might be blocked by the wrist or forearm. MFB was a ‘controversial’

technique according to participants’ preferences (see Figure 2f) and

feedback. The four participants who ranked MFB as the most pre-

ferred technique felt it was “novel” and “interesting”. However, the

others highlighted its high learning costs. Besides, six participants

mentioned they were not able to flex their middle or ring fingers

while holding the others stable smoothly, which eventually led to

extra caution.

6.2 Lessons Learned
Based on the study results, we extracted three lessons (#L) for
designing bare-hand mid-air pointing techniques.

L1. HandDepthCursor and HandConeGrid are suggested due

to their higher accuracy, lower workload, and arm fatigue.

When the environmental density is relatively high, Hand-

ConeGrid can be the first choice, given its powerful disam-

biguation mechanism and efficient gestural operations.

L2. The designed bare-hand mid-air pointing technique may

inevitably need the same action for multiple purposes, such

as a pinch gesture for all types of selection confirmation. In

such a case, a suitable mode-switching mechanism should

be designed and integrated into the technique.

L3. Designers should consider the capabilities of hand-tracking

devices. In this study, we found finger actions might be

blocked by other parts of the hand, which affected user per-

formance.

6.3 Limitations and Future Work
As a first exploration of freehand pointing techniques for dense

environments in VR HMDs, this work has two limitations, which

represent possible avenues for future work. First, the MultiFinger-

Bubble [9] was first proposed and implemented using haptic gloves,

while we used the headset’s built-in cameras to track the hands as

a bare-hand approach. The difference in tracking approach may

have led to slightly different results. Second, based on the taxon-

omy [1, 42], we proposed two techniques with defined gestures.

In the future, we want to explore other possible gestures for the

proposed techniques, enhance the techniques, and compare them

with the controller-based techniques. For example, recently, Yu et

al. [41] proposed design patterns that combined on-boy and mid-air

interfaces for VR interaction. Their work opens more opportunities

for designing mid-air selection techniques in dense VR environ-

ments. We plan to explore the possibility of combining bare-hand

and on-body techniques with suitable disambiguation mechanisms

in the future. In addition, we plan to test further optimized tech-

niques in real VR scenarios and with other properties of the objects

(e.g., non-regular, arbitrary shapes) and mixed with non-selectable

environmental objects as distractors.

7 CONCLUSION
In this paper, we explored bare-hand mid-air pointing selection

techniques for dense VR environments. We first reviewed existing

controller-based techniques and developed two gestural adaptions—

HandDepthCursor and HandConeGrid. We then compared and

evaluated them with an existing technique, MultiFingerBubble,

via a user study using two levels of density. Our results showed

that HandDepthCursor and HandConeGrid were fast and accurate.

HandConeGrid had particular advantages in densely cluttered en-

vironments. Based on our results, we summarized three lessons for

future design and development of bare-hand mid-air techniques for

target selection in dense VR environments.
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